Alertness (Caffeine)

0.0 (0)
  (for Alertness)
Alertness is one brand name of the medicine also known by its generic name Caffeine. This page displays only reviews left by users of Alertness. Click here to see all reviews left for all forms of Caffeine. You can also choose other review combinations.

More about Caffeine

What is/are Caffeine?

Caffeine is a bitter, white crystalline xanthine alkaloid and a stimulant drug. Caffeine is found in varying quantities in the seeds, leaves, and fruit of some plants, where it acts as a natural pesticide that paralyzes and kills certain insects feeding on the plants, as well as enhancing the reward memory of pollinators. It is most commonly consumed by humans in infusions extracted from the seed of the coffee plant and the leaves of the tea bush, as well as from various foods and drinks containing products derived from the kola nut. Other sources include yerba maté, guarana berries, guayusa, and the yaupon holly.

In humans, caffeine acts as a central nervous system stimulant, temporarily warding off drowsiness and restoring alertness. It is the world's most widely consumed psychoactive drug, but unlike many other psychoactive substances, it is legal and unregulated in nearly all parts of the world. Beverages containing caffeine, such as coffee, tea, soft drinks, and energy drinks, enjoy great popularity. In North America, 90% of adults consume caffeine daily.

Part of the reason caffeine is classified by the Food and Drug Administration as GRAS (generally recognized as safe) is that toxic doses (over 10 grams) are much higher than typically used doses (less than 500 milligrams). Ordinary consumption can have low health risks, even when carried on for years – there may be a modest protective effect against some diseases, including Parkinsons Disease, and certain types of cancer. Caffeine can have both positive and negative effects on anxiety disorders. Some people experience sleep disruption if they consume caffeine, especially during the evening hours, but others show little disturbance and the effect of caffeine on sleep is highly variable.

Evidence of a risk to pregnancy is equivocal, but some authorities have concluded that prudent advice is for pregnant women to limit consumption to the equivalent of two cups of coffee per day or less. The American Congress of Obstetricians and Gynecologists (ACOG) concluded in 2010 that caffeine consumption is safe up to 200 mg per day in pregnant women. Caffeine has pressor and mild diuretic effects when administered to people who are not used to it, but regular users develop a tolerance to this effect, and studies have generally failed to support the common notion that ordinary consumption contributes significantly to dehydration. With heavy use, tolerance develops rapidly to autonomic effects such as elevated heart rate and muscle twitching, but not to the cognitive or arousal effects of caffeine. The degree to which caffeine can produce clinically significant physical and mental dependence remains a subject of controversy in the medical literature.


Inside the body caffeine acts through several mechanisms, but its most important effect is to counteract a substance called adenosine that naturally circulates at high levels throughout the body, and especially in the nervous system. In the brain, adenosine plays a generally protective role, part of which is to reduce neural activity levels – for example, there is some evidence that adenosine helps to induce torpor in animals that seasonally hibernate.

Mechanism of action

Adenosine acts as an inhibitor neurotransmitter that suppresses activity in the central nervous system. Consumption of caffeine antagonizes adenosine and increases activity in neurotransmission including acetylcholine, epinephrine, dopamine, serotonin, glutamate, norepinephrine, cortisol, and in higher doses, endorphins which explains the analgesic effect to some users. At very high doses (exceeding 500 milligrams) caffeine inhibits GABA neurotransmission. This evidence explains why caffeine causes anxiety, insomnia, rapid heart and respiration rate.

Because caffeine is both water-soluble and lipid-soluble, it readily crosses the blood–brain barrier that separates the bloodstream from the interior of the brain. Once in the brain, the principal mode of action is as a nonselective antagonist of adenosine receptors (in other words, an agent that reduces the effects of adenosine). The caffeine molecule is structurally similar to adenosine, and is capable of binding to adenosine receptors on the surface of cells without activating them, thereby acting as a competitive inhibitor.

Adenosine is found in every part of the body, because it plays a role in the fundamental adenosine triphosphate (ATP) related energy producing mechanism and is also needed for RNA synthesis, but it has additional functions in the brain. The evidence indicates that brain adenosine acts to protect the brain by suppressing neural activity and by increasing blood flow via receptors located on vascular smooth muscle. Brain adenosine levels are increased by various types of metabolic stress, including lack of oxygen and interruption of blood flow. There is evidence that adenosine functions as a synaptically released neurotransmitter in some parts of the brain; however, stress-related adenosine increases appear to be produced mainly by extracellular metabolism of ATP. Unlike most neurotransmitters, adenosine does not seem to be packaged into vesicles that are released in a voltage-controlled manner, but the possibility of such a mechanism has not been ruled out fully.

Several classes of adenosine receptors have been described, with different anatomical distributions. A1 receptors are widely distributed, and act to inhibit calcium uptake. A2A receptors are heavily concentrated in the basal ganglia, an area that plays a critical role in behavior control, but can be found in other parts of the brain as well, in lower densities. There is evidence that A 2A receptors interact with the dopamine system, which is involved in reward and arousal. (A2A receptors can also be found on arterial walls and blood cell membranes.)

Beyond its general neuroprotective effects, there are reasons to believe that adenosine may be more specifically involved in control of the sleep-wake cycle. Robert McCarley and his colleagues have argued that accumulation of adenosine may be a primary cause of the sensation of sleepiness that follows prolonged mental activity, and that the effects may be mediated both by inhibition of wake-promoting neurons via A1 receptors, and activation of sleep-promoting neurons via indirect effects on A2A receptors. More recent studies have provided additional evidence for the importance of A2A, but not A1, receptors.

Caffeine, like other xanthines, also acts as a phosphodiesterase inhibitor. A number of potential mechanisms have been proposed for the athletic performance-enhancing effects of caffeine. In the classic, or metabolic theory, caffeine may increase fat utilization and decrease glycogen utilization. Caffeine mobilizes free fatty acids from fat and/or intramuscular triglycerides by increasing circulating epinephrine levels. The increased availability of free fatty acids increases fat oxidation and spares muscle glycogen, thereby enhancing endurance performance. In the nervous system, caffeine may reduce the perception of effort by lowering the neuron activation threshold, making it easier to recruit the muscles for exercise.

Caffeine metabolites

Metabolites of caffeine also contribute to caffeine's effects. Paraxanthine is responsible for an increase in the lipolysis process, which releases glycerol and fatty acids into the blood to be used as a source of fuel by the muscles. Theobromine is a vasodilator that increases the amount of oxygen and nutrient flow to the brain and muscles. Theophylline acts as a smooth muscle relaxant that chiefly affects bronchioles and acts as a chronotrope and inotrope that increases heart rate and force of contraction.

Detection in biological fluids

Caffeine can be quantified in blood, plasma, or serum to monitor therapy in neonates, confirm a diagnosis of poisoning, or facilitate a medicolegal death investigation. Plasma caffeine levels are usually in the range of 2–10 mg/L in coffee drinkers, 12–36 mg/L in neonates receiving treatment for apnea, and 40–400 mg/L in victims of acute overdosage. Urinary caffeine concentration is frequently measured in competitive sports programs, for which a level in excess of 15 mg/L is usually considered to represent abuse.

This article uses material from the Wikipedia article Caffeine, which is released under the Creative Commons Attribution-Share-Alike License 3.0.

Medicine Photos

Hover or click on a photo to enlarge it.

Medicine containing Caffeine

This page uses publicly available data from the U.S. National Library of Medicine (NLM), National Institutes of Health, Department of Health and Human Services; NLM is not responsible for the page and product and does not endorse or recommend this or any other product.

Reviews for Alertness (Caffeine)

See reviews for a different combination of brand names and medical conditions:
There are no user reviews for this listing.
Already have an account?
Overall satisfaction
Lack of side effects
Relevant Brand Name and Medical Condition
Additional Information
Please tell us about your experience with this medicine